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INFORMATION CONTENT AND SENSITIVITY OF MATRIX ELEMENTS TO

STRUCTURAL CHANGES IN COMPLEX SCATTERING SYSTEMS

L. STA&EMENT'OF THE PROBLEM AND RESEARCH ACTIVITiES

This research "as carried out to investigate the basic
problems that are :entcal to understanding light scattered from
complex systems. Siuaple systems refer to those spherical, ellip-
tical and cylindrical geometries that age directly amenable to
theory. Computer prégrams can calculate every proéerty of these
systems and can evaluate the data extracted from experimental
systems., Theoretical resnlts are known to the accuracy of the
fundumental opciéal and electrical cénstants, and experimental

data can be achieved to arbitrary high degree of accuracy.

Laboratory devices work under ideal conditions whereas diagnostic

equipment for field work is limited by (short) measurement time,
éngular resolution, spatial tesolution, angular view ( # =scan)
and time for data anaiysis of complex curves to get the desired
information.

One problem concerns how much scattering data is needed, how
good it must be and how well it describes the scatterer (or
scuttering system) in a practical way. Another problem concerns
how chh information is contained in the various light scattering
matri. elements and whether changes in the signals cau be related
to chanjes in particular optical or geometrical‘properties. The
st@tement of these problems and the experimental attack on them
are summarized in six research objectives listed below:

A. Measure the matrix elements Sij for perféct scattering

systems and prepsrations of exactly known mixtures of perfect

. N N .- (S S
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systems. Determine which matrix elements more accurately de-~-
scribe the system and signify a change.

B. Procure and prépare perfect scattering systgms and
cxactly known mixtures of perfect systems.

C. Apply Fourier transforms, curve length, method of
moments, area rat;os, inflection points, polynomial fits, etc. to
light scattering data to elécidate and quantify small changes in
the data‘that arise from small changes'ln the system.

D. Investigate the role of "average, mean or effective”
rnffactive index as it pertains to a complex séattering system
and determine {f it {s a relevant optical constunt for 'describing
the system. |

FE. Investigate th much data i1s necessary to uniquely
determine the optical properties of a scattering system. Data
acquisition can be limited to finfte angular resolutinn, limited
-scan, noise and imperfect optical elements. Determine what
compromises and shortcuts -an be taken,

F. Prepare a tutorial report discussinglthe two common
systems for treating the Stoke’s vector V = (I, Q, U, V) and V
= (14, L., Iq, IV), the elements of the scatter ng matrix in cach
system and the relationship vetween these matrices and the
experimental mcasurementsvactually made .

All rescarch objectives have been met. Some results have
been published, some are submitted for publication and some are
tn final stages of preparation (See Appendix B). The rest of this
final report will discuss some of our most important reéults and

show some of the data that will ultimately appear in
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I1. THE RESULTS

We have procured and prepared perfect scattering systuems and
|

i
mixtures of pﬁrfect systems. These are perfect spheres (pur-

chased from Duke Chemical Company), perfect fibers (fabricated in

|

our luhorator§), polydispersed irregular particle systems (pur-
chased from Duke Chemical or fabricated by us), and perturbed

fibers (fabriéuted by us). [n all cases we have attempted to
i

|
document the optical, electrical and geometrical pooperties of

the particle or particle system to make the experimental data

i
useful for theorists. This satisfies rescarch objective B.
|

We have hensurcd and calculated the matrix elements Sij for

. .
perfect scattering systems and prepardtions of exactly known

mixtures., The data were used to determine which matrix clewents

)

were needed tio characterize the system and which ones were nost

s 1 . . -
sensitive to |system changes. This satisfies rescarch objective

I
|

A. The net result is an experimental and theoretical data bank

which can be}mnnlpulated and studied to exémino how geometrical,
optical and %Iuctricql constants contribute to the various Sij
Light scntteling curves.

The cxp;rimontnl and theoretical results of our studics of

the above mentioned data bank and its manipulation are vast and

i
are still being analyzed. Some resulets are discussed below.

A. Response of ili to Change in Particle Size.

Figures 1 through 5, which demonstrate how certain
matrix elements change with particle size, {s pertinent to

rescarch objectiva C.
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1. Response to large size change.

Figure 1 shows the four non-zero matrix elements for
a very small Rayleigh sphere (r = 0.,075,). It can be solved
ey . .ctly using the approximation that ; << A yielding the three
EU|ctinns stnzﬂ, cos ¢ and zero for the matrix elements 3125 5133
and Sy, respectively. Scananing cach particular matrix element
from Figure 1 to Figure 5 shows how cach matrix element changes
with increasing sphere rﬁdius. Increasing the radius approxi-
mately a factor of 2 going from Figure 1 to 5 causes all maarrix
elements to develop high frequency phase information. FEach

matrix element will be discussed individually.

Matrix element $¢;

This matrix element represents the total intensity of lighi
scatteced by the particle. Unpolarized light illuminates the
s;ntturvr, and the total scattered intensity is measured. The
vertical scale is logarithmetic, the curve has been normalized to
wagximum intensity at - = 0. As the particle increases size, S11
oscillates with increasing frequencve We also note that the
ratio light secattered forward, (- = 0) to back ( = 1809)
increases. Larger particles scatter more light in the forward
direction. For the particle studied here the ratio changes by 3
srders of magnitude. While this is generally true for low index
particies, the ratin decreases as Ny increases.

Matrix element 5

—

2

l

This matrix element represents the extenl to which the
particle can distinguish between horizontally and vertically

polarized light. T1f hoth were treated equaily by the particle

15




S12 would be zero. As r increases, the initially smooth sin?

curve becomes distorted in the back scatter region, and finatlly
developes oscillations about zerv as large as +100Z.

Matrix element 533

This matrix element represents the extent to which the
par*icle can distinguish between +45° and =~45° polarization. I[If
both were treated equally S43 would be zecro. As r increases, the
initally smooth cos curve becomes distorted and like Siz

develops oscillations that can vary rapidly between +100%.

Matrix element S34

This matrix element represents the extent tn which the
particle can distinguish between left-hand and right-hand civcu-
Lar polsrizntion when {lluminated with +452 or =452 linear
polarization.‘ If all combinations were trecated equally Sq, would

be zero. As r {incrcases, the initially zero S4, signal becomes

nen-zero and | ike the other Sii' develops oscillations of increa-

sing frequency and amplitude.

We can make the following observations about how the matrix

elements respond to a large change in spherical particle size:

a. All matrix elements dcvelop struccure as the particle

size increases. Quantifying the structure makes it possihle to

relate structure to particle size in some cases. For example {n
Figures 1-5 the number of maxima (or minima) 1in nny'mutfix
element curve {s equal to the size of the particle tnmicrouns to
within 10%. However, this is a special case and the results are
fortuitously accurate for this combination of ny, ny and r.

b, Large particles scatter more light into all angles than

small particles. For the particles discussed here there ts a 1ab
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intensity difference between the small and large particle scatter-

ing efficiency.

Ce The ratio (forward scatter:back scatter) increascs as

the particle size increases. This is generally true for low

refractive index nj. However as ny increnses the ratio decreases

for constant r. Iucreasing absorption however i{ncreases the

ratio by removing more light from the backscatter.

d. Regardless of particle size, refractive index or absorp-

tion the following bounds govern iil §il for spheres.

S initially decrecases as ' increases {rom zero,

312 i{s always zero at = 0 and . = 1800,

$33 is always +100% at o = 0 and —lOOZIut 0= 1800

Sy4 is always zero at ' = 0? and 0 = 1809

and zero everywhere for "very small" particles.

These bounds are obeyed even by mixtures of perfect spheres

polydispersed inny, ny and r. Fibers obey only the bound on S
and the bound tﬁnt Sy4 ts zero everywhere for "very small"” fiber

radii.

e. Some special comments about S,

The matrix element S}A has‘distinguished itself as a parti-
cularly important signature and sensitive probe of scattering
systems. Our 1nitia1 experiments many years ago with biophysical
particles would have ecnded without success {f 534 did not
uniquely survive to distinguish different polydispersed biologi-
cal particle systems., [t is unfortunate that S5, {s not as

experimentally accessable as the matrix elements $y1 and 512

- which are responsible for most of the {nformation obtafined from

17
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remote scattering systems. S3, 18 first a true indicator of
"large particles” becoming non-zero as particle size goes from
small to large (Rayleigh to Mie). For the systenm dlscusseé here,
S34 already shows a non-zero signal for v = 0.15y, 104416, (ny =
1.10). FExperimentally Sj, is a powerful probe since large ampli-
fication of an inirially zero SBA signal can yield a "full scale"
reading for an arbitrarily small change in the signal. Thus the
sm;lies: deviation from zero will appear directly. This tech-
nique does not work for S12 and S35 which already have values of
*+100 for small particles. For these clements, a small change must
veccur oﬁ an already large (full scale) signal. We have axperi-
mentally and theoretically investigated the ability of Sp, and
Sqq to respond to a small fncrease in r by subtracting from them
the "Rayl<ipgh component”, S, = sin?. and Sqy = coszu. The
result, when amplified, can display approximately the same sensi-
tivity as 934. However, since noiseleds signals do not occur
experimentally, subtraction does not yield the same accuracy

achieved from measuring Sq4 directly.

2. Response of iil to Small Size Change (Differenceo
Curves).
Figures 1 through 5 which show the matrix clements
for the five sphere sizes r = 0,075, 0,15, 0.30, 0.60 and 1.0
microns also show the mitrix element signals that occur when the
initial size is changed by . small value of 1%Z. Both matrix
element curves ace indicated by solid lines, and thelr difference
SLij‘séij is shown as a dotted line. We observe the following:
a. Figure 1. A 1% change in radius of a 0.07%, (Rayleigh)

particle is not detected praphically at this level of sensiti-

18
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vity. The actual numbers used to plot the curves show differ~-
eﬁces less than 0.1%Z, within the noise of most experiments.

b. Figure 2. A 1% radius change in a 0.15u particle
changes all matrix elements. In addition, the difference occurs
in the back scatcter (v ~ 909), S34 shows the largest difference,
but is in competition with S5,

c. Figure 3. For larger particles (r = 0.3u) changes occur
both in forward and back scatter but are larger in the back
sca;tter. Again Sq, is most sensitive.

d. Figure 4. A 1% change in evenvlarger particles (r = 0.6y)
cause changes throughout thu'entire n~range. Differences are
larger in the back scatter and Sq, is most.sensitive.

e, Figure 5. For our largest particles (r = 1.0,), ampli-
tude shifts unused‘by 1% size changes cadse extreﬁely 1arg?
difference sigrals. Note that all difference curves go off the
scale, (Sbij-ssij) > Sij(max) 2 100% {n the back scatter. Sq4 is
most sensitive and the most sensitive region is 1356 S 1600,

f. ‘Geneiﬁi Conclusions.

Small chunges ( 17%) {n the radii of very small particles are
not detected by any of the Sij' Differences increase as particle

size increasas and appear {n all $§ 534‘15 the most seasitive,

13
giving the larg:st ‘'i1fference. All differences are larger in the
hack scatter. Phase shifts are not as dramatic as amplitude
shifts. This is demonstrated by $4, in itskrcsponse to a 17
change in a 1.) particle at ' = 145% (Figure 5).

All experdimental and theoretical results discussed here are

for perfect single spheres and fibers. Their {mplications become

19
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very important for complex scattering syatems such as mixtures of

polydispersed perfect spheres, irregular single particles or

mixtures of irregular particles. The bounds on s1j at p = 0°,

90° and 1809 discussed earlier will be violated on departure from

spherictity.

B. Arc Length as a Probe For Change.

Scanning each particular matrix element from figures 1
through 5 shows how each matrix element responds to an increasing
‘sphere radius. The mést obvious change in all signals 'is the
increasing frequency and amplitude of the oscillations. This
feature manifests itself as a change in arc leﬁgth. We studied‘
the arc length of each Sij as a function of particle radius and
obtained Figures 6 and 7.

The arc length is simply the geometrical length of the curve
in arbitrary units. A straight horizontal line for all Sij {s
assigned an arc leugth of 180 (for 180°). For SIZ' S44 and Sq44 a
straight horizontal line starting at o = 0, =« = 0% going to
no= 0, x = 100%Z; to N = 1802 v = 100%; and then to v = 180° n = 0%
has an arc length of (100 + 180 + 160) = 380 units. The sume
geometrical value occurs for the normalized le énrves. Arc
length hecomes valuable when different curves or families of
curves are compared.

Figurerﬁ shows twe useful resultas:

l. Arc lengths of Sy, S35 and 84, iacrease more or less
monotonically witn increasing radius.

2. The arc lengths of Sy oscillate wildly and are not

monotonic.
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The arc length of S;, is not an accurate probe for changing

particle siza, For a particular radii (close to r = 1.0 ) the

arc length cculd decrease by more than a factor of 3 for a 30%

increase or decrease in size. The other Sjj possess some struc-

ture but give more accurate results. The relationship between

radius r and arc length AL of S33 and S3,4 1s given by
r{microns) =y %%%}%g

Note that for larger particles (r > 1.5,) the AL of S5,, is larger

than that of S33 and Sy,. For smaller particles (r < 1.0y) the

relationship is

r(microns) - LﬁL&%ﬁQl

Although it is well-known that certain features of Sij

curves change with particle property, previously, only limited

attention has been given to quantifing the change os we are doing

here. These observations are important for monitoring changes

that occur in system parameters during time resolved or biolo-

gical experiments, for example, where often the exact optical

properties are not as important as knowing what changed and by

how much.

Further study of S\l arc length led to some intercsting

cesults. We noticed that the arc length oscillations in 5, are

similar to the well-known cross section oscillations that occur

as a function of particle radius. More fundamental than the arc
length however is the area under 5, which represents the total

energy scattered by the particle., This line of reasoning led to

23
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Figure 7 which shows how the arc length compares to the area

under S,, which when mulctiplied by %1rr3 ylelds the well-known

extinction coefficient as a function of r. Therefore arc length

of S|, has a behavior similar to the fundamental particle
property~~the extinctfi{on cross section. The other Sij arc
lengths are not fundamental but useful nevertheless as probes for
changes in particle parameters.

"Results of similar arc length data as a function of ny and
nj wili be publiéhed. | |

C. Fourier Transforms as a Probe For Change .

fhe increasing oscillatory structure on Sij curves
resulcing fromvincreasing radius has ﬁeen shown in Figures 1-5.
The'Sl-j curves are expansions of‘integral order Bessel functions
uhose.amplitudes are varied by tarmonic functions. Oug studies
of the Fourier transforms of the S;y give additional fnformation
about the scatterer and the relative sensitivity of .various Sij
to particle parameter change. Figu:esla, 9 and 10 show the FT
three sets of particleﬁ respectively: r = 0.25y and 0.30u; r =
0.55u and 0.60y; and r = 2.5, and 2.6,,, We observe the following:

l. Increésing particle size introduces more oscillatory

structure (highar frequency components) omn all Syy-
~

2. Sll has a low frequency continuum lacking significant

monochromatic features.
3. S35 is only slightly better than S;; possessing
a low frequency continuum ({nitially {t is cos? ) and a few

quantized frequency components for larger particles.

4, S12 and Sy, Aare very competitive. They both display
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RELATIVE AMPLITUDE
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Figure 8. Amplitude-Ffrequency Distributions of Fouf Non-Zero
Fiber Matrix Elements and Their Response to a Small Change in the

Radius of a 0.25 Micron Fiher. 14416A ny = 1.466 n, = 0.
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RELATIVE AMPLITUDE

r = 0.55 microns r = 0.60 microns
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Figure 9. Amplitude-frequency Distributions of Four Non-Zero
Fiber Matrix £lements and Their Response to a Small Change in the

Radius of a 0.55 Micron Fiber, }4416A ny = 1.466 no = 0.

26



IR e e L .

RELATIVE AMPLITUDE
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Figure 10. Ampljtude-Frequency Distributions of Four Non-Zero

Fiber Matrix Elements and Their Respcnse to a Small Change in the

Radius of a 2.5 Micron Fiber. 1447164 ny = 1.466 n, = 0.
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extensive quantized frequency information for the same size
particle and also compete as a detector of small size change.
However S,;, might be more reliable since the number of components
increase as r increases whereas the number of ¢omponents in S12
remain constant or change only slightly. When|components and
amplitudes are taken into account, S;; and S3a|are comparable and
serve well as signatures and indfcators of cthge. SlZ is more
readily accessible to remote sensing experiments since it couples

unpolarized (total intensity) incident on the Fcatterer with
: ]
{

‘horizontally polarized scattered light.
It is interesting to observe the relativ% efficiency of
represent ing the Sij in terms of Bessel functJdns as compared to

Fourier transforms - both of which make a conqlete mathematical set.

' . }
To generate a particular set of sij requires ajbout twice to three

1

times as many Fourier coefficients as Bessel 40efflcients. This
: |

i
is dye to the natural cylindrical geometry of the scatterfng
i

. |
system which lends i{tself directly to Bessel'# equation and a
‘ |

Bessel function solution. E

D. Information Contained in Forward and;Back Scatter

[

. i
We investigated the amount of information contained in
the forward scattered and back scattered light {nto small ¢ aear

o = 0 and » = 1809, respectively. This satis?ies objective K. Many

i

ground based remote sensing experiments have uccess only to back

scatter information from light scattered backi to the laser site.
: » ;
Figure 11 shows the intensities of forward ('ﬁ* 39) and back
I
scattered ( n = 18079) light as a function of sbhere radfus for

spheres with various optical constants. Flgu&e Il can be studied

in several ways. |
!
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Change n; from 1.1 to 1.7 with ny; = 0 go from A to C.
Change ny from 1.1 to 1.7 with np = 0.5 go from B to D.
Change n, from 0 to 0.5 with ny = 1.1 go froa A to B.
Chaﬁge ny from 0 to 0.5 with ny = 1.7 go from C to D.
a. Figure 11-A. The forward scatter (g = 0) from particles
of small nj (n; = 1l.1) and ng (npy * 0.0) increases samoothly and

monotonically over 10 orders of magnitude for a one order of

magnitude inérease in radius. This aays that one 1.5y particle

scatiters, the the forwaf@ direction, as much light as 1010 0.15u
particles. This is an effective vay to nide particles or
particle information.

The back scatter (0 = 180°) {ncreascs also, but only by 7

orders of maéditude. In addition it is not monotonic. For

particle

example, increasing or decreasing the size of a 0.45

increases thg'scattered intensity by 3 orders of magnitude making
the back scatter intensity information non-unique to particle
.stze. Back scatter measurements are very sensitive to particle
change, but not good indicator; of particle size., They are good
probes but not good signatures. |

b. Figure 11~-B. Absorption (n, = 0.5) destroys virtually all
structure in‘the back scatter. Both forward and back scatter
curves are essentially monotonic. fHowever, the intensity ratio:
forward to back scatter, remains about the same as that for
particles with zero absorption {n, = 0) shown in Fig. A.

c. Figure 11-C. The intensity of both forward and back

scattered light from large index particles (nl‘= 1.7) with no

absorption (np = 0) oscillates with increasing particle size.
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3The forward scatter oscillations are larger, the back scatter
oscillations are smaller for larger ny. In addition, the ratio
of forward to back scatter remains essentially constant (~102),
independent of pattiéle size.

d. Figure 11-N. Scattering from high index (n; = 1.7) and

high absorption (ny = 0.5) spheres displays osci{llatfions in the
back scatter only for smaller particles (r < 0.7yu).

e. General Conclusions

Low refractive index spheres scatter light in the forward
direction with aé intensity that increases smoothly and monotoni-
cally with increasing particle‘size -~ essentially independent of
the amount of absorption. Absorption destroys oscillation in
both the forward aﬁd back scatter - essentially independent of:
the value of ny .

Back scatter information is a sensitive probe for change but
not a uniéue indicator of size. Back scatter f{nformation that

does not oscillate with wavelength must come from particles with

large absorption (assuming that ny stays large over the ¢ -range).

Conversely substantial 4 ~dependent oscillation in the back
scatter must be caused by low absorption and low index particles.
In general, there isvmore Information in back scatter than in
forward scatter -~ which is fortunate for many ground based reméte
sensing experiments,

All observations discussed above are valid for single
spheres or monodisbersed sphere systems. Polydispersity aund/or
systems of irregular particles will destroy phase-amplitude infor-‘

mation. Exactly what information remains is the subject of our

present vesearch.
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E. AveragéI mean or effective refractive index

This study satisfies research objective D and has bheen
published in Aerosol Science and Technology 1:329-335(1982).

F. Stokes Vectors, Mueller Matrices and polarized light

scattering

This study satisfies research objective F. A paper has

been submitted to the American Journal of Physics.
II1l. FINAL COMMENTS

This final report describes the main thrust of our research
and a‘number of experimental results from which conclusions were
drawn to make our point concerning the information coantained 1in
the matrix elements. At best, significant trends can be
established. To investigate all combination# of r, n; and ay
would yield an Infinitely large data bank too unwieldy to anal-
yze. We attempted to 1limit our particles {nto regions: size-
large, medium, small; refractive index and absgsorption-high,
medium, low and choscec carefully combinations that will establish
a trend or generate an exception. This approach has been produc-
tive and has given good insight to the information contained in

light scattering data,.
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Conferences:

Colloquia:

Seminars: .

APPENDIX A

COLLOQUIA, SEMINARS AND CONFERENCES

CSL on light scattering, Aberdeen, Maryland,
June 15-17, 1981.

Conference on Aerosol Science, Santa Monica,
California, February 20-23, 1982.

Optical Sciences Department, University of

Arizona, Spring 1982Z.

SERI, Golden, Cclorado, Summer 1981.
Physics Department, University of Lund,
and, Sweden, Summer 1982, |

“hysics Department,‘UnIvetsity of Arizona,
Fall 1982. | |
SERI, Goiden, Colorado, Summer 1981,
Physics Department, Univgrsity of Lund,

Lund, Sweden, Summer 1982,
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APPENDIX B

PAPERS

1. "Masking of Information in Light Scattering Signals from
Complex Scatterers", William S. Bickel, Hashim A. Yousif and

Wilbur M. Bailey, Aerosol Science and Technology 1:329-335

(

D

|
2% "Light Scattering from Fibers - an Extension of a Single Slit
iffraction Experiment", Wolfgang Gilliar and William S. Bickel,
|
submitted

submitted to Am. J. of Physics.

"The Physical aund Optical Properties of Agglomerated Gold

(%]

1ms Optical Scattering from Surfaces", Richard Zito, William S.

)

ckel and Wilbur M. Bailey, submitted to Applied Optics.

"Stokes Vectors, Mueller Matrices and Polarized Scattered

&

ght", William S. Bickel and Wilbur M. Bailey, submitted to Am.

[ w
e A e g “4'~¥4

[

» Physics.

|
5, "Light Diffraction Studies of Single Muscle Fiber as a
thction of Fiber Rotation", Wolfgang Gilliar and William S.

Bickel, accepted by Biophysical Journal.

6. "Light Scattering from Geometrically Perturbed Thin Fiber,”

William S. Bickel and Gordon Videen, to be submitted to App.

Optics.

|

1

7. "Information Content in LS Signals from Mixtures,

ﬂolytidpersed and Multiple Scattering System'", William S. Bickel,
|
Wilbur M. Bailey and Hashim A. Yousif, to be submitted to Applied

Optics.
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8. "Sensitivity of LS Matrix Elements to Small Changes {in
Structural and Optical Constants of Perfect Scatterers", William
S. Bickel, W. M., Bailey and H. A. Yousif, to be submitted to
Aerosol Science and Technology.

9. "Scattering Corrections to ORD and CD Measurements", Willianm

S. Bickel, to be submitted to App. Optics.
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Commander

Naval Exploslive Ordnance Dlsposai
Technology Center

ATTN: AC-3

Indlan Head, MD 20640

Of tlcer-1n-Cnarge

Marline Corps Detachment

Naval Ex)loslve Ordnance D!sposal
Techuwology Center

indlan Head, MD 20640

Commander

Naval Alr Developmont Center

ATTN: Code 2012 (Dr. Robert Helmboid)
Warminster, PA 18974

Commander

Naval Weapons Center

ATTN: Code 3893 (L. A, Mathews)
ATTN: Code 3882 (Dr, C. £, Dlnerman)
ATTN: Code 3918 (Dr. Alex Shlanta)
China Lake, CA 93.55

Commandling Offlcer

Naval Weapons Support Center
Appiled Sclences Department
ATTN: Code 50C, Bidg 190
ATTN: Code 502 (Carl Lohkamp)
ATTN: Code 5063 (R, Farren)
Crane, IN 47522

US MAR{INE CORPS

Commanding General

Marine Corps Development and
€ducatlon Command

ATTN: Flre Power Dlviston, DO91

Quantico, VA 22134

DEPARTMENT OF THE AR FORCE

Department of the Alr Force

Heaiquarters Foralgn Technology Dtlvlslon
ATTN:  TQTR

Wright-Patterson AFB, OH 45433

AFAMRL/TS
ATTN: COL Johnson
Wright-Patterson AFB, OH 45433

AFWAL/FIEEC (Wendel] Banks)
Wwright-Patterson AFB, OH 45433
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HQ AFSC/SDZ

ATTN: CPT D. Rledtiger
Andrews AFB, MD 20334

USAF TAWC/THL

£giln AFB, FL 32542

USAF SC

ATTN: AD/YQ (Dr. A. vaslioft)
ATTN:  AD/YQO (MAJ Owens)
Egiln AFB, FL 32542

AD/XRO

Egllin AFB, FL 32542

Commander

Hanscom Alr Force Base
ATTN: AFGL/LYC (Dr. Barnes)
ATTN: AFGL/POA (Or., Frederlick

Bedford, MA 01731

Headguarters

Tactlcal Alr Command

ATTN: DRP

Langley AFB, VA 23665

AFOSR/NE

ATTN: MAJ H, Wlinsor
Bollitng AFB, DC 20332

OUTSINDE AGENCIES

OSV Fleid Ottice
P.0. Box 1925%

Egllin AFB, FL 32542

Volz)

Battelles, Columbus Laboratorles

ATTN: TACTEC
505 Klng Avenue
Columbus, OH 43201

Toxlcology Informat

Natlonal Research Counclli
2101 Constltution Ave,, NW

washlngton, DC 204

Los Alamos Natlonal

ATTN: T-DOT, MS B279 (S.

ton Center, JH 652
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Laboratory
Gersti)

Los Alamos, NM 87545

Instltute for Detense Analysls

1801 N, Reauregard Street
Alexandria, VYA 22311



ADDITIONAL ADDRESSEES

Qfflce ot Misslle Electronic wWartare
ATTN: DELEW=-M-T-AC (Ms Arthur)
White Sands Mlsslie Range, NM 88002

US Army Moblilty Equ!pment Research and
Deveiopment Center

ATTN: DROME-RT (Mr, O, F., Kezer)

Fort Belvolr, YA 22060

Dlrector

US Night Vislon and EQO Laboratorles

ATTN: DRSEL-NV=VI (Dr, R, G. Buser)

ATTN: DRSEL-NV-V| (Mr. R, Sergemann)

ATTN: DELNV-V! (Luanne Obert)

ATTN: DELNV-L (D, N, Spector)

Fort Beivolr, VA 23651

Commandant

Academy of Health Sclences, US Army
ATTN: HSHA-CDH

ATTN: HSHA-IPM

Fort Sam Houston, TX 78234

Sclence Applicatlions Inc.

ATTN: Dr. Frederlck G. Gebhardt
3 Preston Court

Bedford, MA 01730

Sclence Appilcations Inc,
ATTN: Mr, Robert £, Turner

1010 Woodman Drlve, Sulte 200

Dayton, OM 45432
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Creative Optlcs
25 wWashington St
Bedford, MA 01730

McDonne il Douglias Astro Co

ATTN: John Adams (A-3-210,11-1)
5301 Bolsa Ave

Huntlngton Beach, CA 92647

BMD Program Offlce

ATTN: Dlck McAtee, Rm, 7S14
5001 Elsenhower Ave
Ajexandrla, VA 22333

Dr. W, Mlchasel Farmer, Assoc Prot, Physlcs
" Unlverslty of Tennessee Space Instlitute

Tuil lahoma, TN 37388
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